IMT2260 Teoría de Aprendizaje Automático
Escuela | Ing Matemática Y Computacional |
Área | |
Categorías | |
Créditos | 10 |
Prerequisitos
Requisitos: (EYP2114 y IIC2440 y IMT2250) o (EYP2114 y ICS113H)
Sin restricciones
Calificaciones
Este ramo no ha sido calificado.
CURSO:TEORIA DE APRENDIZAJE AUTOMATICO
TRADUCCION:MACHINE LEARNING I
SIGLA:IMT2260
CREDITOS:10
MODULOS:03
CARACTER:MINIMO
TIPO:CATEDRA
CALIFICACION:ESTANDAR
PALABRAS CLAVE:CIENCIA DE DATOS, APRENDIZAJE AUTOMATICO, PREDICCION, APRENDIZAJE SUPERVISADO
NIVEL FORMATIVO:PREGRADO
I.DESCRIPCIÓN DEL CURSO
En este curso los estudiantes desarrollaran los fundamentos estadisticos y algoritmicos de la teoria de aprendizaje. Tras cursar este curso, el estudiante debe ser capaz de clasificar un problema de aprendizaje de acuerdo a sus caracteristicas, escoger un modelo apropiado para su resolucion, producir una garantia teorica de la complejidad muestral para dicho problema, y proponer un metodo computacional para resolverlo.
II.RESULTADOS DE APRENDIZAJE
1.Clasificar problemas de aprendizaje de acuerdo a su estructura.
2.Escoger un modelo de aprendizaje para resolver un problema.
3.Producir garantias teoricas de la complejidad muestral para un problema de aprendizaje.
4.Proponer un metodo computacional para resolver un problema de aprendizaje.
III.CONTENIDOS
1.Problemas de Aprendizaje:
1.1.Estadistico, Adversarial, En-Linea, Supervisado, No-Supervisado
1.2.Validacion cruzada y tradeoff sesgo-varianza
1.3.Ejemplos y Aplicaciones
2.Modelos Lineales y Regresion
2.1.Breve repaso de modelos de regresion
2.2.Regularizacion
2.3.LASSO
3.Modelos Lineales en Clasificacion
3.1.Linear Discriminant Analysis
3.2.Regresion Logistica
3.3.Separacion Lineal por Hiperplanos
4.Expansiones en bases y regularizacion
4.1.Interpolacion polinomial y splines
4.2.Filtering y seleccion de atributos
4.3.Suavizamiento
4.4.Regresion Logistica No-Parametrica
4.5.Espacios de Hilbert con Nucleo Reproducente
4.6.Wavelets
5.Metodos de suavizacion por kernels
5.1.Suavizacion en una dimension
5.2.Regresion local en R
5.3.Kernel Density Estimation
5.4.Modelos de mezclas para estimacion de densidad
6.Evaluacion y Seleccion de Modelos
6.1.Analisis de sesgo y varianza
6.2.Error empirico y generalizacion
6.3.Medidas de capacidad: numero efectivo de parametros, dimension de Vapnik-Chervonenkis y cotas de PAC-Bayes
6.4.Validacion cruzada
6.5.Bootstrap
7.Inferencia de modelos y averaging
7.1.Bootstrap y Estimador de Maxima Verosimilitud (MLE)
7.2.El algoritmo EM
7.3.Bagging
8.Modelos Aditivos y Arboles
8.1.Modelos aditivos generalizados
8.2.Metodos Basados en arboles
8.3.Mezcla de expertos jerarquica
9.Boosting y Arboles Aditivos
9.1.Metodos de boosting
9.2.Perdida exponencial y ada-boost
9.3.Funciones de perdida y robustez
9.4.Boosting tres
9.5.Gradient Boosting
9.6.Regularizacion
IV.ESTRATEGIAS METODOLOGICAS
-Clases expositivas.
-Ayudantias.
-Talleres practicos.
V.ESTRATEGIAS EVALUATIVAS
-Interrogaciones: 40%
-Tareas: 30%
-Examen final escrito: 30%
VI.BIBLIOGRAFIA
Minima
The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Hastie, Tibshirani & Friedman. Second Edition. Springer, 2009
Understanding Machine Learning: From Theory to Algorithms. S. Shalev-Schwartz, S. Ben-David. Cambridge Univ Press, 2014
Complementaria
Neural Network Learning: Theoretical Foundations. M. Anthony & P. Bertlett. Cambridge University Press, 1999
Learning from Data, Y.S. Abu-Mostafa, M. Magdon-Ismail, H.-T. Lin. AMLBook, 2017.
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
INSTITUTO DE INGENIERIA MATEMATICA Y COMPUTACIONAL / SEPTIEMBRE 2020
Secciones
Sección 1 | Victor Verdugo |