DDE3153 Derecho e Inteligencia Artificial

EscuelaDerecho
Área
Categorías
Créditos10

Prerequisitos

Sin requisitos
Restricciones: (Nivel = Doctorado)

Calificaciones

Este ramo no ha sido calificado.

No hay comentarios.

CURSO : DERECHO E INTELIGENCIA ARTIFICIAL
TRADUCCION : LAW AND ARTIFICIAL INTELLIGENCE
SIGLA : DDE3153
CREDITOS : 10 UC / 6 SCT
MODULOS : 1 MÓDULO A LA SEMANA
REQUISITOS : SIN REQUISITOS
CONECTOR : NO APLICA
RESTRICCIONES : ALUMNOS DE DOCTORADO
CARACTER : OPTATIVO
TIPO : CATEDRA
CALIFICACION : ESTANDAR
NIVEL FORMATIVO : DOCTORADO


I.DESCRIPCIÓN DEL CURSO

Este curso busca exponer a los doctorandos a los problemas juridicos que los agentes artificiales generan entregandoles las herramientas tecnicas y juridicas que les permitan iniciar una investigacion autonoma sobre las problematicas emergentes en esta materia.


II.RESULTADOS DE APRENDIZAJE

General:
Analizar los diversos problemas juridicos que la inteligencia artificial supone para el Derecho.

En este contexto, sus objetivos especificos son:
1.Comprender el funcionamiento de los diversos sistemas de inteligencia artificial, desde los netamente simbolicos hasta aquellos de aprendizaje automatizado, con especial enfasis en redes neuronales, aprendizaje por refuerzo y aprendizaje no supervisado.
2.Comprender los diversos problemas juridicos que generan, desde sesgos y opacidad, hasta titularidad, responsabilidad y propiedad intelectual.
3.El analisis de los diversos problemas juridicos generados mediante herramientas dogmaticas, historicas y comparadas.


III.CONTENIDOS

-Historia de la inteligencia artificial
-Modelos de inteligencia artificial, simbolicos y conectivistas.
-Mecanismos de aprendizaje automatizado
-Posibilidades de futuro, inteligencia general y consciencia.
-Sesgos y sus causas.
-Responsabilidad por los actos de agentes artificiales.
-Propiedad intelectual e inteligencia artificial


IV.ESTRATEGIAS METODOLOGICAS

Se evaluara a traves de un trabajo escrito con forma de articulo de revista que se realizara en dos entregas, una primera en forma de borrador que el profesor corregira y devolvera a los alumnos a fin que realicen los cambios se?alados y una segunda y final entrega en una fecha posterior.


V.ESTRATEGIAS EVALUATIVAS

-Las estrategias evaluativas estan orientadas a demostrar el desarrollo de las habilidades propuestas en los resultados de aprendizaje del curso.
-Listar brevemente las diferentes estrategias de evaluacion que se consideraran a lo largo del curso y su porcentaje de ponderacion en la nota final.
-Se debe verificar coherencia con los resultados de aprendizaje y la metodologia del curso.
-Entre las evaluaciones se podria considerar: articulo, aplicacion o ejercicio real, analisis de casos, control, debate, estudio de casos, ensayo, exposicion, fichas de lecturas, informes, juego de roles, mapa mental, mapa conceptual, pruebas, portafolio, proyecto, propuestas, producciones creativas, presentacion oral, poster, reportes, simulaciones, seminarios, videos, entre otros.
-Se sugiere dar mayor ponderacion a aquella/s evaluacion/es que permiten evidenciar el logro de los aprendizajes mas relevantes que tiene el curso.
-Si bien las estrategias de evaluacion y su ponderacion deben indicarse en el programa oficial del curso, podran ser modificadas por el docente a cargo e informadas a los estudiantes al inicio del curso.

Ejemplo:
-Exposicion grupal : 30%
-Informe escrito : 30%
-Examen final escrito : 40%


VI.BIBLIOGRAFIA

Minima:
-Amunategui Perello, Carlos. Arcana Technica. El Derecho y la Intelifgencia Artificial (Tirant, Valencia, 2020)
-Russell, Stuart y Norvig, Peter, Artificial Intelligence, A Modern Approach 4th Edition (2020)

Complementaria:
-AAVV, Report of the Commission on Technology, Automation, and Economic Progress (1966)
-Abbot, Ryan, The Reasonable Computer: Disrunpting the Paradigm of Tort Liability, The George Washington Law Review 86-1 (2017)
-Alarie, Benjamin, Niblett, Anthony, Yoon, Albet H., How artificial intelligence will affect the practice of law, University of Toronto Law Journal 68-1 (2018)
-Ashley, K., Artificial Intelligence and Legal Analytics, (Cambridge University Press, Carbridge 2017)
-Barton, Benjamin H., Bibas, Stephanos, Rebooting Justice. More technology, fewer lawyers, and the future of law (Encounter Books, 2017, London-New York).
-Bayern, Shawn, ?The Implications of Modern Business-Entity Law for the Regulation of Autonomous Systems? European Journal of Risk Regulation 2 (2016)
-Bhat, Aditya, Autonomous Vehicles: A prespective of past and future trends en International Journal of Engineering Technology Science and Research 4-10 (2017)
-Blakin, Jack M., The Path of Robotics Law, California Law Review Circuit 6 (2015).
-Broussard, M., Artificial Unintelligence. How Computers Misunderstand de World, (MIT Press-Kindle, Cambridge, 2018)
-Buolamwini, J., Gebru, T, Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification in Proceedings of Machine Learning Research 81 (2018)
-Casey, Anthony J., Niblett, Anthony, Self-driving Laws, University of Toronto Law Journal, 66-4 (2016)
-Chopra, Samir and White, Laurence F., A Legal Theory for Autonomous Artificial Agents (University of Michigan Press-Kindle, Michigan, 2011).
-Colin, Rule, Online Dispute Resolution for Business (John Wiley, 2002, San Francisco)
-Davenport, Thomas H., Artificial Intelligence for the Real World in Harvard Business Review, On AI, Analytics and the New Machine Age (Harvard Business Publishing-Kindle, 2019, Boston MA).
-DeMott, Deborah A., Disloyal Agents. Alabama Law review 58 (2007)
-Easterbrook, Frank, Cyberspace and the Law of the Horse?, University of Chicago Legal Forum (1996)
-Eubanks, Virginia, Automating Inequality. How High-Tech Tools profile, police, and punish the poor (St. Martin?s Press, 2018, New York)
-Ford, Martin, Rise of the Robots (Basic Books, 2015)
-Ford, Martin, Architects of Intelligence, (Packt, Birmingham, 2018)
-Frey, Carl Benedict y Osborne, Michael A., The future of employment: How susceptible are jobs to computerisation? In Technological Forecasting and Social Change 114 (2017)
-Fumio Shimpo, The Principal Japanese AI and Robot Strategy toward Establishing Basic Principles in Barfield, Woodrow y Pagallo, Ugo (Eds.), Research Handbook on the Law of Artificial Intelligence (Cheltenham, 2018, Edward Elgar)
-Gal, M. S., Elkin-Koren, N. (2017). ?Algorithmic consumers.? Harvard Journal of Law Technology (Harvard JOLT), 30(2)
-Gray, G., Statutes enacted in normalized form: the legislative experience in Tennessee in Computer Power and Legal Reasoning (West Publishing, 1985)
-Hinton, G., Salakhutdinov, R, Reducing the Dimensionality of Data with Neural Networks in Science 313 (2006)
-Kaplan, Jerry, Artificial Intelligence: What Everyone Needs to Know (New York, Oxford University Press, 2016)
-Kearns, Michael y Roth, Aaron, The Ethical Algorithm (Oxford University Press, 2019, New York)
-Kerninghan, B y Ritchie, D., The C Programming Language (Prentice Hall, 1978)
-Kerr, Ian R., Spirits in the Material World: Intelligent Agents as Intermediaries in Electronic Commerce, in Dalhousie L.J. 190 (1999)
-Kleinberg, Jon M., Mullainathan, Sendhil, and Raghavan, Manish, Inherent Trade-Pffs in the Fair Determination of Risk Scores in ITCS (2016)
-Krizhevsky, A., Sutskever, I., Hinton, G., ImageNet Classification with Deep Convolutional Neural Networks en Advances in neural information processing systems 25-2 (2012).
-LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition en Proceedings of the IEEE 86-11 (1998).
-Lee, K.-F., AI Superpowers. China, Silicon Valley and the New World Order (Houghton, Boston-New York, 2018).
-Lessig, Lawrence, Code and Other Laws of Cyberspace (New York, 1999, Basic Books).
-Marron, Donncha, ?Lending by Numbers?: Credit Scoring and the Constitution of Risk within American Consumer Credit?, Economics and Society 35 (2007)
-McCarthy J., Minsky, M.L., Rochester, N. y Shannon, A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence (1955)
-Minsky, M. y Papert, S., Perceptrons: An Introduction to computational Geometry (MIT Press, Cambridge, 1969)
-Newell, A. Shaw J.C. y Simon H.A., Empirical Explorations of the Logic Theory Machine in Western Computer Proceedings (1957)
-Newell, A. Shaw J.C. y Simon H.A., Report on a General Problem-Solving Program in Proceedings of the International Conference on Information Processing, pp.256-264
-Ng, A., What Artificial Intelligence Can and Can?t Do Right Now in HBR (2016)
-Noble, Safiya Umoja, Algorithms of Opperssion. How Search Engines Reinforce Racism (New Yor University Press-Kindle, 2018, New York)
-O?Neil, Cathy, Weapons of math Destruction. How Big Data Increases Inequality and Threatens Democracy (Brodway Books-Kindle, 2016, New York).
-Pasquale, Frank, The Black Box Society. The Secret Algorithms that Control money and Information (Harvard University Press, 2015, Cambridge MA-London)
-Pauling, Linus et alia, The Triple Revolution, Santa Barbara, California (1964).
-Pearl, Judea, The Book of Why. The new science of cause and effect (Basic Books, 2018, New York)
-Pinochet Olave, Ruperto, La Formacion del Consentimiento a traves de las Nuevas Tecnologias de la Informacion I, in Ius et Praxis 10-2 (2004)
-Pistelli-Palmarini, M., Language and Learning: The Debate between jean Piaget and Noam Chomsky (Routledge, London, 1979)
-Rosenblatt, Frank, The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, en Phychological Review 65-6 (1958)
-Rumelhart, D., Hinton, G. y Williams, R., Learning Representations by Back-Propagating Errors en Nature 323 (1986).
-Ryder, Richard, ?Speciesim Again: The Original Leaflet? Critical Society 2 (2010)
-Silver, D. et alia, Mastering the Game of Go with Deep Neural Networks and Tree Search.
-Silver, D. et alia, Mastering the Game of Go without Human Knowledge en Nature 550 (2017).
-Surdeanu, Mihai, Nallapi, Ramesh, Gregory, George, Walker, Joshua and Manning, Christopher, Risk Analysis for Intellectual Property Litigation in Proceedings of the 13th International Conference on Artificial Intelligence and Law (New York, ACM, 2019).
-Surden, Harry, Machine Learning and Law, Wash. L. Rev. 87 (2014).
-Susskind, Richard y Susskind, Daniel, The Future of the Professions (Oxford, Oxford University Press-Kindle, 2015)
-Sweeney, Latanya ?Discrimination in Online Ad Delivery? Comunications of the ACM 56 (2013)
-Tondani, Davide, Universal basic income and negative income. Two different ways of thinking redistribution in The Journal of Socio-Economics 38-2 (2009)
-Turing, Alan, On computable numbers, with an application to the Entscheidungsprobleme, Proceedings of the London Mathematical Society s2-42 (1937)
-Turing, Alan, Computing Machinery and Intelligence, in Mind 49 (1950)
-Turner, Jacob, Robot Rules: Regulating Artificial Intelligence (London, Palgrave Macmillan)
-Weinbaum D. y Veitas V., Open Ended Intelligence: the Individuation of Intelligent Agents in Journal of Experimental and Theoretical Artificial Intelligence 29-2 (2017).
-Wu, Y. et alia, Google?s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation


Secciones

Sección 1 Carlos Amunategui